MakeItFrom.com
Menu (ESC)

ACI-ASTM CA6N Steel vs. N06985 Nickel

ACI-ASTM CA6N steel belongs to the iron alloys classification, while N06985 nickel belongs to the nickel alloys. They have a modest 39% of their average alloy composition in common, which, by itself, doesn't mean much. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CA6N steel and the bottom bar is N06985 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 17
45
Fatigue Strength, MPa 640
220
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 75
80
Tensile Strength: Ultimate (UTS), MPa 1080
690
Tensile Strength: Yield (Proof), MPa 1060
260

Thermal Properties

Latent Heat of Fusion, J/g 280
320
Maximum Temperature: Mechanical, °C 740
990
Melting Completion (Liquidus), °C 1440
1350
Melting Onset (Solidus), °C 1400
1260
Specific Heat Capacity, J/kg-K 480
450
Thermal Conductivity, W/m-K 23
10
Thermal Expansion, µm/m-K 9.9
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.6
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 11
55
Density, g/cm3 7.8
8.4
Embodied Carbon, kg CO2/kg material 2.5
8.8
Embodied Energy, MJ/kg 35
120
Embodied Water, L/kg 110
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
250
Resilience: Unit (Modulus of Resilience), kJ/m3 2900
160
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
23
Strength to Weight: Axial, points 38
23
Strength to Weight: Bending, points 30
21
Thermal Diffusivity, mm2/s 6.1
2.6
Thermal Shock Resistance, points 40
16

Alloy Composition

Carbon (C), % 0 to 0.060
0 to 0.015
Chromium (Cr), % 10.5 to 12.5
21 to 23.5
Cobalt (Co), % 0
0 to 5.0
Copper (Cu), % 0
1.5 to 2.5
Iron (Fe), % 77.9 to 83.5
18 to 21
Manganese (Mn), % 0 to 0.5
0 to 1.0
Molybdenum (Mo), % 0
6.0 to 8.0
Nickel (Ni), % 6.0 to 8.0
35.9 to 53.5
Niobium (Nb), % 0
0 to 0.5
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.020
0 to 0.030
Tungsten (W), % 0
0 to 1.5