MakeItFrom.com
Menu (ESC)

ACI-ASTM CB30 Steel vs. 5383 Aluminum

ACI-ASTM CB30 steel belongs to the iron alloys classification, while 5383 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ACI-ASTM CB30 steel and the bottom bar is 5383 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
85 to 110
Elastic (Young's, Tensile) Modulus, GPa 200
68
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
26
Tensile Strength: Ultimate (UTS), MPa 500
310 to 370
Tensile Strength: Yield (Proof), MPa 230
150 to 310

Thermal Properties

Latent Heat of Fusion, J/g 290
390
Maximum Temperature: Corrosion, °C 420
65
Maximum Temperature: Mechanical, °C 940
200
Melting Completion (Liquidus), °C 1430
650
Melting Onset (Solidus), °C 1380
540
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 21
130
Thermal Expansion, µm/m-K 11
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
29
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
97

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.5
Density, g/cm3 7.7
2.7
Embodied Carbon, kg CO2/kg material 2.3
9.0
Embodied Energy, MJ/kg 33
160
Embodied Water, L/kg 130
1170

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 140
170 to 690
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 18
32 to 38
Strength to Weight: Bending, points 18
38 to 42
Thermal Diffusivity, mm2/s 5.6
51
Thermal Shock Resistance, points 17
14 to 16

Alloy Composition

Aluminum (Al), % 0
92 to 95.3
Carbon (C), % 0 to 0.3
0
Chromium (Cr), % 18 to 21
0 to 0.25
Copper (Cu), % 0 to 1.2
0 to 0.2
Iron (Fe), % 72.9 to 82
0 to 0.25
Magnesium (Mg), % 0
4.0 to 5.2
Manganese (Mn), % 0 to 1.0
0.7 to 1.0
Nickel (Ni), % 0 to 2.0
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.5
0 to 0.25
Sulfur (S), % 0 to 0.040
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.4
Zirconium (Zr), % 0
0 to 0.2
Residuals, % 0
0 to 0.15