MakeItFrom.com
Menu (ESC)

ACI-ASTM CB30 Steel vs. 5454 Aluminum

ACI-ASTM CB30 steel belongs to the iron alloys classification, while 5454 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ACI-ASTM CB30 steel and the bottom bar is 5454 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
61 to 93
Elastic (Young's, Tensile) Modulus, GPa 200
69
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
26
Tensile Strength: Ultimate (UTS), MPa 500
230 to 350
Tensile Strength: Yield (Proof), MPa 230
97 to 290

Thermal Properties

Latent Heat of Fusion, J/g 290
400
Maximum Temperature: Mechanical, °C 940
190
Melting Completion (Liquidus), °C 1430
650
Melting Onset (Solidus), °C 1380
600
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 21
130
Thermal Expansion, µm/m-K 11
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
34
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
110

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.5
Density, g/cm3 7.7
2.7
Embodied Carbon, kg CO2/kg material 2.3
8.6
Embodied Energy, MJ/kg 33
150
Embodied Water, L/kg 130
1180

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 140
68 to 590
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 18
23 to 36
Strength to Weight: Bending, points 18
30 to 41
Thermal Diffusivity, mm2/s 5.6
55
Thermal Shock Resistance, points 17
10 to 16

Alloy Composition

Aluminum (Al), % 0
94.5 to 97.1
Carbon (C), % 0 to 0.3
0
Chromium (Cr), % 18 to 21
0.050 to 0.2
Copper (Cu), % 0 to 1.2
0 to 0.1
Iron (Fe), % 72.9 to 82
0 to 0.4
Magnesium (Mg), % 0
2.4 to 3.0
Manganese (Mn), % 0 to 1.0
0.5 to 1.0
Nickel (Ni), % 0 to 2.0
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.5
0 to 0.25
Sulfur (S), % 0 to 0.040
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15