MakeItFrom.com
Menu (ESC)

ACI-ASTM CB30 Steel vs. 6151 Aluminum

ACI-ASTM CB30 steel belongs to the iron alloys classification, while 6151 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ACI-ASTM CB30 steel and the bottom bar is 6151 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
69
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
26
Tensile Strength: Ultimate (UTS), MPa 500
330 to 340
Tensile Strength: Yield (Proof), MPa 230
270 to 280

Thermal Properties

Latent Heat of Fusion, J/g 290
410
Maximum Temperature: Mechanical, °C 940
170
Melting Completion (Liquidus), °C 1430
650
Melting Onset (Solidus), °C 1380
590
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 21
170
Thermal Expansion, µm/m-K 11
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
45
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
150

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.5
Density, g/cm3 7.7
2.7
Embodied Carbon, kg CO2/kg material 2.3
8.2
Embodied Energy, MJ/kg 33
150
Embodied Water, L/kg 130
1180

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 140
520 to 580
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 18
34
Strength to Weight: Bending, points 18
39
Thermal Diffusivity, mm2/s 5.6
70
Thermal Shock Resistance, points 17
15

Alloy Composition

Aluminum (Al), % 0
95.6 to 98.8
Carbon (C), % 0 to 0.3
0
Chromium (Cr), % 18 to 21
0.15 to 0.35
Copper (Cu), % 0 to 1.2
0 to 0.35
Iron (Fe), % 72.9 to 82
0 to 1.0
Magnesium (Mg), % 0
0.45 to 0.8
Manganese (Mn), % 0 to 1.0
0 to 0.2
Nickel (Ni), % 0 to 2.0
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.5
0.6 to 1.2
Sulfur (S), % 0 to 0.040
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15