MakeItFrom.com
Menu (ESC)

ACI-ASTM CB30 Steel vs. 852.0 Aluminum

ACI-ASTM CB30 steel belongs to the iron alloys classification, while 852.0 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ACI-ASTM CB30 steel and the bottom bar is 852.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
64
Elastic (Young's, Tensile) Modulus, GPa 200
70
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
26
Tensile Strength: Ultimate (UTS), MPa 500
200
Tensile Strength: Yield (Proof), MPa 230
150

Thermal Properties

Latent Heat of Fusion, J/g 290
370
Maximum Temperature: Mechanical, °C 940
190
Melting Completion (Liquidus), °C 1430
640
Melting Onset (Solidus), °C 1380
210
Specific Heat Capacity, J/kg-K 480
840
Thermal Conductivity, W/m-K 21
180
Thermal Expansion, µm/m-K 11
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
45
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
130

Otherwise Unclassified Properties

Base Metal Price, % relative 10
15
Density, g/cm3 7.7
3.2
Embodied Carbon, kg CO2/kg material 2.3
8.5
Embodied Energy, MJ/kg 33
160
Embodied Water, L/kg 130
1150

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 140
160
Stiffness to Weight: Axial, points 14
12
Stiffness to Weight: Bending, points 25
43
Strength to Weight: Axial, points 18
17
Strength to Weight: Bending, points 18
24
Thermal Diffusivity, mm2/s 5.6
65
Thermal Shock Resistance, points 17
8.7

Alloy Composition

Aluminum (Al), % 0
86.6 to 91.3
Carbon (C), % 0 to 0.3
0
Chromium (Cr), % 18 to 21
0
Copper (Cu), % 0 to 1.2
1.7 to 2.3
Iron (Fe), % 72.9 to 82
0 to 0.7
Magnesium (Mg), % 0
0.6 to 0.9
Manganese (Mn), % 0 to 1.0
0 to 0.1
Nickel (Ni), % 0 to 2.0
0.9 to 1.5
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.5
0 to 0.4
Sulfur (S), % 0 to 0.040
0
Tin (Sn), % 0
5.5 to 7.0
Titanium (Ti), % 0
0 to 0.2
Residuals, % 0
0 to 0.3