MakeItFrom.com
Menu (ESC)

ACI-ASTM CB30 Steel vs. A201.0 Aluminum

ACI-ASTM CB30 steel belongs to the iron alloys classification, while A201.0 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ACI-ASTM CB30 steel and the bottom bar is A201.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
71
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
27
Tensile Strength: Ultimate (UTS), MPa 500
480
Tensile Strength: Yield (Proof), MPa 230
420

Thermal Properties

Latent Heat of Fusion, J/g 290
390
Maximum Temperature: Mechanical, °C 940
170
Melting Completion (Liquidus), °C 1430
650
Melting Onset (Solidus), °C 1380
570
Specific Heat Capacity, J/kg-K 480
880
Thermal Conductivity, W/m-K 21
120
Thermal Expansion, µm/m-K 11
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
30
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
90

Otherwise Unclassified Properties

Base Metal Price, % relative 10
11
Density, g/cm3 7.7
3.0
Embodied Carbon, kg CO2/kg material 2.3
8.1
Embodied Energy, MJ/kg 33
150
Embodied Water, L/kg 130
1150

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 140
1250
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
46
Strength to Weight: Axial, points 18
44
Strength to Weight: Bending, points 18
45
Thermal Diffusivity, mm2/s 5.6
46
Thermal Shock Resistance, points 17
21

Alloy Composition

Aluminum (Al), % 0
93.7 to 95.5
Carbon (C), % 0 to 0.3
0
Chromium (Cr), % 18 to 21
0
Copper (Cu), % 0 to 1.2
4.0 to 5.0
Iron (Fe), % 72.9 to 82
0 to 0.1
Magnesium (Mg), % 0
0.15 to 0.35
Manganese (Mn), % 0 to 1.0
0.2 to 0.4
Nickel (Ni), % 0 to 2.0
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.5
0 to 0.050
Sulfur (S), % 0 to 0.040
0
Titanium (Ti), % 0
0.15 to 0.35
Residuals, % 0
0 to 0.1