MakeItFrom.com
Menu (ESC)

ACI-ASTM CB30 Steel vs. EN 1.8836 Steel

Both ACI-ASTM CB30 steel and EN 1.8836 steel are iron alloys. They have 79% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CB30 steel and the bottom bar is EN 1.8836 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
170
Elastic (Young's, Tensile) Modulus, GPa 200
190
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
73
Tensile Strength: Ultimate (UTS), MPa 500
570
Tensile Strength: Yield (Proof), MPa 230
410

Thermal Properties

Latent Heat of Fusion, J/g 290
250
Maximum Temperature: Mechanical, °C 940
410
Melting Completion (Liquidus), °C 1430
1460
Melting Onset (Solidus), °C 1380
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 21
44
Thermal Expansion, µm/m-K 11
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 10
2.6
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.3
1.7
Embodied Energy, MJ/kg 33
23
Embodied Water, L/kg 130
50

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 140
450
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 18
20
Strength to Weight: Bending, points 18
19
Thermal Diffusivity, mm2/s 5.6
12
Thermal Shock Resistance, points 17
17

Alloy Composition

Aluminum (Al), % 0
0.015 to 0.054
Carbon (C), % 0 to 0.3
0 to 0.18
Chromium (Cr), % 18 to 21
0 to 0.35
Copper (Cu), % 0 to 1.2
0 to 0.6
Iron (Fe), % 72.9 to 82
95.1 to 99.985
Manganese (Mn), % 0 to 1.0
0 to 1.8
Molybdenum (Mo), % 0
0 to 0.23
Nickel (Ni), % 0 to 2.0
0 to 0.85
Niobium (Nb), % 0
0 to 0.060
Nitrogen (N), % 0
0 to 0.027
Phosphorus (P), % 0 to 0.040
0 to 0.030
Silicon (Si), % 0 to 1.5
0 to 0.55
Sulfur (S), % 0 to 0.040
0 to 0.025
Titanium (Ti), % 0
0 to 0.060
Vanadium (V), % 0
0 to 0.14