MakeItFrom.com
Menu (ESC)

ACI-ASTM CB30 Steel vs. EN AC-51400 Aluminum

ACI-ASTM CB30 steel belongs to the iron alloys classification, while EN AC-51400 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ACI-ASTM CB30 steel and the bottom bar is EN AC-51400 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
71
Elastic (Young's, Tensile) Modulus, GPa 200
67
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
25
Tensile Strength: Ultimate (UTS), MPa 500
190
Tensile Strength: Yield (Proof), MPa 230
120

Thermal Properties

Latent Heat of Fusion, J/g 290
400
Maximum Temperature: Mechanical, °C 940
170
Melting Completion (Liquidus), °C 1430
640
Melting Onset (Solidus), °C 1380
600
Specific Heat Capacity, J/kg-K 480
910
Thermal Conductivity, W/m-K 21
110
Thermal Expansion, µm/m-K 11
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
31
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
110

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.5
Density, g/cm3 7.7
2.7
Embodied Carbon, kg CO2/kg material 2.3
9.1
Embodied Energy, MJ/kg 33
150
Embodied Water, L/kg 130
1170

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 140
110
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 18
20
Strength to Weight: Bending, points 18
28
Thermal Diffusivity, mm2/s 5.6
46
Thermal Shock Resistance, points 17
8.6

Alloy Composition

Aluminum (Al), % 0
90.5 to 95.5
Carbon (C), % 0 to 0.3
0
Chromium (Cr), % 18 to 21
0
Copper (Cu), % 0 to 1.2
0 to 0.050
Iron (Fe), % 72.9 to 82
0 to 0.55
Magnesium (Mg), % 0
4.5 to 6.5
Manganese (Mn), % 0 to 1.0
0 to 0.45
Nickel (Ni), % 0 to 2.0
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.5
0 to 1.5
Sulfur (S), % 0 to 0.040
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15