MakeItFrom.com
Menu (ESC)

ACI-ASTM CB30 Steel vs. Grade C-6 Titanium

ACI-ASTM CB30 steel belongs to the iron alloys classification, while grade C-6 titanium belongs to the titanium alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CB30 steel and the bottom bar is grade C-6 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
290
Elastic (Young's, Tensile) Modulus, GPa 200
100
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 77
39
Tensile Strength: Ultimate (UTS), MPa 500
890
Tensile Strength: Yield (Proof), MPa 230
830

Thermal Properties

Latent Heat of Fusion, J/g 290
410
Maximum Temperature: Mechanical, °C 940
310
Melting Completion (Liquidus), °C 1430
1580
Melting Onset (Solidus), °C 1380
1530
Specific Heat Capacity, J/kg-K 480
550
Thermal Conductivity, W/m-K 21
7.8
Thermal Expansion, µm/m-K 11
9.8

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
1.2
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 10
36
Density, g/cm3 7.7
4.5
Embodied Carbon, kg CO2/kg material 2.3
30
Embodied Energy, MJ/kg 33
480
Embodied Water, L/kg 130
190

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 140
3300
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 18
55
Strength to Weight: Bending, points 18
46
Thermal Diffusivity, mm2/s 5.6
3.2
Thermal Shock Resistance, points 17
63

Alloy Composition

Aluminum (Al), % 0
4.0 to 6.0
Carbon (C), % 0 to 0.3
0 to 0.1
Chromium (Cr), % 18 to 21
0
Copper (Cu), % 0 to 1.2
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 72.9 to 82
0 to 0.5
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 0 to 2.0
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.5
0
Sulfur (S), % 0 to 0.040
0
Tin (Sn), % 0
2.0 to 3.0
Titanium (Ti), % 0
89.7 to 94
Residuals, % 0
0 to 0.4