MakeItFrom.com
Menu (ESC)

ACI-ASTM CB30 Steel vs. C87800 Brass

ACI-ASTM CB30 steel belongs to the iron alloys classification, while C87800 brass belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CB30 steel and the bottom bar is C87800 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
42
Tensile Strength: Ultimate (UTS), MPa 500
590
Tensile Strength: Yield (Proof), MPa 230
350

Thermal Properties

Latent Heat of Fusion, J/g 290
260
Maximum Temperature: Mechanical, °C 940
170
Melting Completion (Liquidus), °C 1430
920
Melting Onset (Solidus), °C 1380
820
Specific Heat Capacity, J/kg-K 480
410
Thermal Conductivity, W/m-K 21
28
Thermal Expansion, µm/m-K 11
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
6.7
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
7.3

Otherwise Unclassified Properties

Base Metal Price, % relative 10
27
Density, g/cm3 7.7
8.3
Embodied Carbon, kg CO2/kg material 2.3
2.7
Embodied Energy, MJ/kg 33
44
Embodied Water, L/kg 130
300

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 140
540
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 18
20
Strength to Weight: Bending, points 18
19
Thermal Diffusivity, mm2/s 5.6
8.3
Thermal Shock Resistance, points 17
21

Alloy Composition

Aluminum (Al), % 0
0 to 0.15
Antimony (Sb), % 0
0 to 0.050
Arsenic (As), % 0
0 to 0.050
Carbon (C), % 0 to 0.3
0
Chromium (Cr), % 18 to 21
0
Copper (Cu), % 0 to 1.2
80 to 84.2
Iron (Fe), % 72.9 to 82
0 to 0.15
Lead (Pb), % 0
0 to 0.15
Magnesium (Mg), % 0
0 to 0.010
Manganese (Mn), % 0 to 1.0
0 to 0.15
Nickel (Ni), % 0 to 2.0
0 to 0.2
Phosphorus (P), % 0 to 0.040
0 to 0.010
Silicon (Si), % 0 to 1.5
3.8 to 4.2
Sulfur (S), % 0 to 0.040
0 to 0.050
Tin (Sn), % 0
0 to 0.25
Zinc (Zn), % 0
12 to 16
Residuals, % 0
0 to 0.5