MakeItFrom.com
Menu (ESC)

ACI-ASTM CB6 Steel vs. EN 1.4630 Stainless Steel

Both ACI-ASTM CB6 steel and EN 1.4630 stainless steel are iron alloys. They have a moderately high 94% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CB6 steel and the bottom bar is EN 1.4630 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 18
23
Fatigue Strength, MPa 410
170
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
76
Tensile Strength: Ultimate (UTS), MPa 880
480
Tensile Strength: Yield (Proof), MPa 660
250

Thermal Properties

Latent Heat of Fusion, J/g 280
290
Maximum Temperature: Corrosion, °C 410
520
Maximum Temperature: Mechanical, °C 870
800
Melting Completion (Liquidus), °C 1440
1440
Melting Onset (Solidus), °C 1390
1390
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 17
28
Thermal Expansion, µm/m-K 10
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 12
9.5
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 2.5
2.5
Embodied Energy, MJ/kg 36
36
Embodied Water, L/kg 130
120

Common Calculations

PREN (Pitting Resistance) 17
15
Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
92
Resilience: Unit (Modulus of Resilience), kJ/m3 1110
160
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 32
17
Strength to Weight: Bending, points 26
18
Thermal Diffusivity, mm2/s 4.6
7.5
Thermal Shock Resistance, points 31
17

Alloy Composition

Aluminum (Al), % 0
0 to 1.5
Carbon (C), % 0 to 0.060
0 to 0.030
Chromium (Cr), % 15.5 to 17.5
13 to 16
Copper (Cu), % 0
0 to 0.5
Iron (Fe), % 74.4 to 81
77.1 to 86.7
Manganese (Mn), % 0 to 1.0
0 to 1.0
Molybdenum (Mo), % 0 to 0.5
0 to 0.5
Nickel (Ni), % 3.5 to 5.5
0 to 0.5
Niobium (Nb), % 0
0 to 0.5
Phosphorus (P), % 0 to 0.040
0 to 0.050
Silicon (Si), % 0 to 1.0
0.2 to 1.5
Sulfur (S), % 0 to 0.030
0 to 0.050
Titanium (Ti), % 0
0.15 to 0.8