MakeItFrom.com
Menu (ESC)

ACI-ASTM CB6 Steel vs. EN 1.8902 Steel

Both ACI-ASTM CB6 steel and EN 1.8902 steel are iron alloys. They have 79% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CB6 steel and the bottom bar is EN 1.8902 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 18
21
Fatigue Strength, MPa 410
290
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
73
Tensile Strength: Ultimate (UTS), MPa 880
600
Tensile Strength: Yield (Proof), MPa 660
420

Thermal Properties

Latent Heat of Fusion, J/g 280
250
Maximum Temperature: Mechanical, °C 870
410
Melting Completion (Liquidus), °C 1440
1460
Melting Onset (Solidus), °C 1390
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 17
44
Thermal Expansion, µm/m-K 10
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 12
2.6
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.5
1.8
Embodied Energy, MJ/kg 36
24
Embodied Water, L/kg 130
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
110
Resilience: Unit (Modulus of Resilience), kJ/m3 1110
470
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 32
21
Strength to Weight: Bending, points 26
20
Thermal Diffusivity, mm2/s 4.6
12
Thermal Shock Resistance, points 31
18

Alloy Composition

Aluminum (Al), % 0
0 to 0.015
Carbon (C), % 0 to 0.060
0 to 0.22
Chromium (Cr), % 15.5 to 17.5
0 to 0.35
Copper (Cu), % 0
0 to 0.6
Iron (Fe), % 74.4 to 81
95 to 99.05
Manganese (Mn), % 0 to 1.0
1.0 to 1.8
Molybdenum (Mo), % 0 to 0.5
0 to 0.13
Nickel (Ni), % 3.5 to 5.5
0 to 0.85
Niobium (Nb), % 0
0 to 0.060
Nitrogen (N), % 0
0 to 0.027
Phosphorus (P), % 0 to 0.040
0 to 0.035
Silicon (Si), % 0 to 1.0
0 to 0.65
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0
0 to 0.060
Vanadium (V), % 0
0 to 0.22