MakeItFrom.com
Menu (ESC)

ACI-ASTM CB6 Steel vs. C94300 Bronze

ACI-ASTM CB6 steel belongs to the iron alloys classification, while C94300 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CB6 steel and the bottom bar is C94300 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
87
Elongation at Break, % 18
9.7
Poisson's Ratio 0.28
0.36
Shear Modulus, GPa 77
32
Tensile Strength: Ultimate (UTS), MPa 880
180
Tensile Strength: Yield (Proof), MPa 660
120

Thermal Properties

Latent Heat of Fusion, J/g 280
150
Maximum Temperature: Mechanical, °C 870
110
Melting Completion (Liquidus), °C 1440
820
Melting Onset (Solidus), °C 1390
760
Specific Heat Capacity, J/kg-K 480
320
Thermal Conductivity, W/m-K 17
63
Thermal Expansion, µm/m-K 10
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 12
28
Density, g/cm3 7.8
9.3
Embodied Carbon, kg CO2/kg material 2.5
2.9
Embodied Energy, MJ/kg 36
47
Embodied Water, L/kg 130
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
15
Resilience: Unit (Modulus of Resilience), kJ/m3 1110
77
Stiffness to Weight: Axial, points 14
5.2
Stiffness to Weight: Bending, points 25
16
Strength to Weight: Axial, points 32
5.2
Strength to Weight: Bending, points 26
7.4
Thermal Diffusivity, mm2/s 4.6
21
Thermal Shock Resistance, points 31
7.1

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.8
Carbon (C), % 0 to 0.060
0
Chromium (Cr), % 15.5 to 17.5
0
Copper (Cu), % 0
67 to 72
Iron (Fe), % 74.4 to 81
0 to 0.15
Lead (Pb), % 0
23 to 27
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 3.5 to 5.5
0 to 1.0
Phosphorus (P), % 0 to 0.040
0 to 1.5
Silicon (Si), % 0 to 1.0
0 to 0.0050
Sulfur (S), % 0 to 0.030
0 to 0.080
Tin (Sn), % 0
4.5 to 6.0
Zinc (Zn), % 0
0 to 0.8
Residuals, % 0
0 to 1.0