MakeItFrom.com
Menu (ESC)

ACI-ASTM CB7Cu-1 Steel vs. ASTM Grade HD Steel

Both ACI-ASTM CB7Cu-1 steel and ASTM grade HD steel are iron alloys. They have 86% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CB7Cu-1 steel and the bottom bar is ASTM grade HD steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 5.7 to 11
9.1
Fatigue Strength, MPa 420 to 590
140
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 76
80
Tensile Strength: Ultimate (UTS), MPa 960 to 1350
590
Tensile Strength: Yield (Proof), MPa 760 to 1180
270

Thermal Properties

Latent Heat of Fusion, J/g 280
310
Melting Completion (Liquidus), °C 1430
1410
Melting Onset (Solidus), °C 1500
1370
Specific Heat Capacity, J/kg-K 480
490
Thermal Conductivity, W/m-K 17
16
Thermal Expansion, µm/m-K 11
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 13
17
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 2.6
3.1
Embodied Energy, MJ/kg 38
45
Embodied Water, L/kg 130
180

Common Calculations

PREN (Pitting Resistance) 17
29
Resilience: Ultimate (Unit Rupture Work), MJ/m3 71 to 120
44
Resilience: Unit (Modulus of Resilience), kJ/m3 1500 to 3590
180
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
26
Strength to Weight: Axial, points 34 to 48
21
Strength to Weight: Bending, points 28 to 35
20
Thermal Diffusivity, mm2/s 4.6
4.3
Thermal Shock Resistance, points 32 to 45
19

Alloy Composition

Carbon (C), % 0 to 0.070
0 to 0.5
Chromium (Cr), % 15.5 to 17.7
26 to 30
Copper (Cu), % 2.5 to 3.2
0
Iron (Fe), % 72.3 to 78.4
58.4 to 70
Manganese (Mn), % 0 to 0.7
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 3.6 to 4.6
4.0 to 7.0
Niobium (Nb), % 0 to 0.35
0
Nitrogen (N), % 0 to 0.050
0
Phosphorus (P), % 0 to 0.035
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 2.0
Sulfur (S), % 0 to 0.030
0 to 0.040