MakeItFrom.com
Menu (ESC)

ACI-ASTM CB7Cu-1 Steel vs. EN 1.4938 Stainless Steel

Both ACI-ASTM CB7Cu-1 steel and EN 1.4938 stainless steel are iron alloys. They have a moderately high 90% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CB7Cu-1 steel and the bottom bar is EN 1.4938 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 5.7 to 11
16 to 17
Fatigue Strength, MPa 420 to 590
390 to 520
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
76
Tensile Strength: Ultimate (UTS), MPa 960 to 1350
870 to 1030
Tensile Strength: Yield (Proof), MPa 760 to 1180
640 to 870

Thermal Properties

Latent Heat of Fusion, J/g 280
270
Melting Completion (Liquidus), °C 1430
1460
Melting Onset (Solidus), °C 1500
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 17
30
Thermal Expansion, µm/m-K 11
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 13
10
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.6
3.3
Embodied Energy, MJ/kg 38
47
Embodied Water, L/kg 130
110

Common Calculations

PREN (Pitting Resistance) 17
18
Resilience: Ultimate (Unit Rupture Work), MJ/m3 71 to 120
140 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 1500 to 3590
1050 to 1920
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 34 to 48
31 to 37
Strength to Weight: Bending, points 28 to 35
26 to 29
Thermal Diffusivity, mm2/s 4.6
8.1
Thermal Shock Resistance, points 32 to 45
30 to 35

Alloy Composition

Carbon (C), % 0 to 0.070
0.080 to 0.15
Chromium (Cr), % 15.5 to 17.7
11 to 12.5
Copper (Cu), % 2.5 to 3.2
0
Iron (Fe), % 72.3 to 78.4
80.5 to 84.8
Manganese (Mn), % 0 to 0.7
0.4 to 0.9
Molybdenum (Mo), % 0
1.5 to 2.0
Nickel (Ni), % 3.6 to 4.6
2.0 to 3.0
Niobium (Nb), % 0 to 0.35
0
Nitrogen (N), % 0 to 0.050
0.020 to 0.040
Phosphorus (P), % 0 to 0.035
0 to 0.025
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.015
Vanadium (V), % 0
0.25 to 0.4