MakeItFrom.com
Menu (ESC)

ACI-ASTM CB7Cu-1 Steel vs. EN 1.8505 Steel

Both ACI-ASTM CB7Cu-1 steel and EN 1.8505 steel are iron alloys. They have 78% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CB7Cu-1 steel and the bottom bar is EN 1.8505 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 300 to 420
320
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 5.7 to 11
13
Fatigue Strength, MPa 420 to 590
540
Impact Strength: V-Notched Charpy, J 34
28
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
73
Tensile Strength: Ultimate (UTS), MPa 960 to 1350
1050
Tensile Strength: Yield (Proof), MPa 760 to 1180
860

Thermal Properties

Latent Heat of Fusion, J/g 280
250
Melting Completion (Liquidus), °C 1430
1450
Melting Onset (Solidus), °C 1500
1410
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 17
39
Thermal Expansion, µm/m-K 11
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 13
2.8
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.6
1.6
Embodied Energy, MJ/kg 38
22
Embodied Water, L/kg 130
65

Common Calculations

PREN (Pitting Resistance) 17
2.6
Resilience: Ultimate (Unit Rupture Work), MJ/m3 71 to 120
120
Resilience: Unit (Modulus of Resilience), kJ/m3 1500 to 3590
1950
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 34 to 48
37
Strength to Weight: Bending, points 28 to 35
30
Thermal Diffusivity, mm2/s 4.6
11
Thermal Shock Resistance, points 32 to 45
31

Alloy Composition

Aluminum (Al), % 0
0.8 to 1.2
Carbon (C), % 0 to 0.070
0.28 to 0.35
Chromium (Cr), % 15.5 to 17.7
1.5 to 1.8
Copper (Cu), % 2.5 to 3.2
0
Iron (Fe), % 72.3 to 78.4
95.4 to 97.1
Manganese (Mn), % 0 to 0.7
0.4 to 0.7
Molybdenum (Mo), % 0
0.2 to 0.4
Nickel (Ni), % 3.6 to 4.6
0
Niobium (Nb), % 0 to 0.35
0
Nitrogen (N), % 0 to 0.050
0
Phosphorus (P), % 0 to 0.035
0 to 0.025
Silicon (Si), % 0 to 1.0
0 to 0.4
Sulfur (S), % 0 to 0.030
0 to 0.035