MakeItFrom.com
Menu (ESC)

ACI-ASTM CB7Cu-1 Steel vs. CC764S Brass

ACI-ASTM CB7Cu-1 steel belongs to the iron alloys classification, while CC764S brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CB7Cu-1 steel and the bottom bar is CC764S brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 300 to 420
160
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 5.7 to 11
15
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 76
41
Tensile Strength: Ultimate (UTS), MPa 960 to 1350
680
Tensile Strength: Yield (Proof), MPa 760 to 1180
290

Thermal Properties

Latent Heat of Fusion, J/g 280
180
Melting Completion (Liquidus), °C 1430
850
Melting Onset (Solidus), °C 1500
810
Specific Heat Capacity, J/kg-K 480
400
Thermal Conductivity, W/m-K 17
94
Thermal Expansion, µm/m-K 11
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
32
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
36

Otherwise Unclassified Properties

Base Metal Price, % relative 13
23
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 2.6
2.9
Embodied Energy, MJ/kg 38
49
Embodied Water, L/kg 130
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 71 to 120
80
Resilience: Unit (Modulus of Resilience), kJ/m3 1500 to 3590
390
Stiffness to Weight: Axial, points 14
7.6
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 34 to 48
24
Strength to Weight: Bending, points 28 to 35
22
Thermal Diffusivity, mm2/s 4.6
30
Thermal Shock Resistance, points 32 to 45
22

Alloy Composition

Aluminum (Al), % 0
1.0 to 3.0
Antimony (Sb), % 0
0 to 0.050
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 15.5 to 17.7
0
Copper (Cu), % 2.5 to 3.2
52 to 66
Iron (Fe), % 72.3 to 78.4
0.5 to 2.5
Lead (Pb), % 0
0 to 0.3
Manganese (Mn), % 0 to 0.7
0.3 to 4.0
Nickel (Ni), % 3.6 to 4.6
0 to 3.0
Niobium (Nb), % 0 to 0.35
0
Nitrogen (N), % 0 to 0.050
0
Phosphorus (P), % 0 to 0.035
0 to 0.030
Silicon (Si), % 0 to 1.0
0 to 0.1
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.3
Zinc (Zn), % 0
20.7 to 50.2