MakeItFrom.com
Menu (ESC)

ACI-ASTM CB7Cu-1 Steel vs. EN-MC95310 Magnesium

ACI-ASTM CB7Cu-1 steel belongs to the iron alloys classification, while EN-MC95310 magnesium belongs to the magnesium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ACI-ASTM CB7Cu-1 steel and the bottom bar is EN-MC95310 magnesium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 300 to 420
85
Elastic (Young's, Tensile) Modulus, GPa 190
45
Elongation at Break, % 5.7 to 11
2.2
Fatigue Strength, MPa 420 to 590
110
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
17
Tensile Strength: Ultimate (UTS), MPa 960 to 1350
280
Tensile Strength: Yield (Proof), MPa 760 to 1180
190

Thermal Properties

Latent Heat of Fusion, J/g 280
330
Melting Completion (Liquidus), °C 1430
650
Melting Onset (Solidus), °C 1500
540
Specific Heat Capacity, J/kg-K 480
960
Thermal Conductivity, W/m-K 17
51
Thermal Expansion, µm/m-K 11
25

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
11
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
50

Otherwise Unclassified Properties

Base Metal Price, % relative 13
34
Density, g/cm3 7.8
1.9
Embodied Carbon, kg CO2/kg material 2.6
29
Embodied Energy, MJ/kg 38
260
Embodied Water, L/kg 130
900

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 71 to 120
5.6
Resilience: Unit (Modulus of Resilience), kJ/m3 1500 to 3590
420
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
61
Strength to Weight: Axial, points 34 to 48
40
Strength to Weight: Bending, points 28 to 35
49
Thermal Diffusivity, mm2/s 4.6
28
Thermal Shock Resistance, points 32 to 45
18

Alloy Composition

Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 15.5 to 17.7
0
Copper (Cu), % 2.5 to 3.2
0 to 0.030
Iron (Fe), % 72.3 to 78.4
0 to 0.010
Lithium (Li), % 0
0 to 0.2
Magnesium (Mg), % 0
88.9 to 93.4
Manganese (Mn), % 0 to 0.7
0 to 0.15
Nickel (Ni), % 3.6 to 4.6
0 to 0.0050
Niobium (Nb), % 0 to 0.35
0
Nitrogen (N), % 0 to 0.050
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 1.0
0 to 0.010
Sulfur (S), % 0 to 0.030
0
Unspecified Rare Earths, % 0
1.5 to 4.0
Yttrium (Y), % 0
4.8 to 5.5
Zinc (Zn), % 0
0 to 0.2
Zirconium (Zr), % 0
0.4 to 1.0
Residuals, % 0
0 to 0.010