MakeItFrom.com
Menu (ESC)

ACI-ASTM CB7Cu-1 Steel vs. C18600 Copper

ACI-ASTM CB7Cu-1 steel belongs to the iron alloys classification, while C18600 copper belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CB7Cu-1 steel and the bottom bar is C18600 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 5.7 to 11
8.0 to 11
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
44
Tensile Strength: Ultimate (UTS), MPa 960 to 1350
520 to 580
Tensile Strength: Yield (Proof), MPa 760 to 1180
500 to 520

Thermal Properties

Latent Heat of Fusion, J/g 280
210
Melting Completion (Liquidus), °C 1430
1090
Melting Onset (Solidus), °C 1500
1070
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 17
280
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
70
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
71

Otherwise Unclassified Properties

Base Metal Price, % relative 13
31
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 2.6
2.9
Embodied Energy, MJ/kg 38
46
Embodied Water, L/kg 130
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 71 to 120
44 to 58
Resilience: Unit (Modulus of Resilience), kJ/m3 1500 to 3590
1060 to 1180
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 34 to 48
16 to 18
Strength to Weight: Bending, points 28 to 35
16 to 17
Thermal Diffusivity, mm2/s 4.6
81
Thermal Shock Resistance, points 32 to 45
19 to 20

Alloy Composition

Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 15.5 to 17.7
0.1 to 1.0
Cobalt (Co), % 0
0 to 0.1
Copper (Cu), % 2.5 to 3.2
96.5 to 99.55
Iron (Fe), % 72.3 to 78.4
0.25 to 0.8
Manganese (Mn), % 0 to 0.7
0
Nickel (Ni), % 3.6 to 4.6
0 to 0.25
Niobium (Nb), % 0 to 0.35
0
Nitrogen (N), % 0 to 0.050
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0.050 to 0.5
Zirconium (Zr), % 0
0.050 to 0.4
Residuals, % 0
0 to 0.5