ACI-ASTM CB7Cu-1 Steel vs. C38000 Brass
ACI-ASTM CB7Cu-1 steel belongs to the iron alloys classification, while C38000 brass belongs to the copper alloys. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.
For each property being compared, the top bar is ACI-ASTM CB7Cu-1 steel and the bottom bar is C38000 brass.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 190 | |
100 |
Elongation at Break, % | 5.7 to 11 | |
17 |
Poisson's Ratio | 0.28 | |
0.31 |
Shear Modulus, GPa | 76 | |
39 |
Tensile Strength: Ultimate (UTS), MPa | 960 to 1350 | |
380 |
Tensile Strength: Yield (Proof), MPa | 760 to 1180 | |
120 |
Thermal Properties
Latent Heat of Fusion, J/g | 280 | |
170 |
Melting Completion (Liquidus), °C | 1430 | |
800 |
Melting Onset (Solidus), °C | 1500 | |
760 |
Specific Heat Capacity, J/kg-K | 480 | |
380 |
Thermal Conductivity, W/m-K | 17 | |
110 |
Thermal Expansion, µm/m-K | 11 | |
21 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 13 | |
22 |
Density, g/cm3 | 7.8 | |
8.0 |
Embodied Carbon, kg CO2/kg material | 2.6 | |
2.7 |
Embodied Energy, MJ/kg | 38 | |
46 |
Embodied Water, L/kg | 130 | |
330 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 71 to 120 | |
50 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 1500 to 3590 | |
74 |
Stiffness to Weight: Axial, points | 14 | |
7.1 |
Stiffness to Weight: Bending, points | 25 | |
19 |
Strength to Weight: Axial, points | 34 to 48 | |
13 |
Strength to Weight: Bending, points | 28 to 35 | |
14 |
Thermal Diffusivity, mm2/s | 4.6 | |
37 |
Thermal Shock Resistance, points | 32 to 45 | |
13 |
Alloy Composition
Aluminum (Al), % | 0 | |
0 to 0.5 |
Carbon (C), % | 0 to 0.070 | |
0 |
Chromium (Cr), % | 15.5 to 17.7 | |
0 |
Copper (Cu), % | 2.5 to 3.2 | |
55 to 60 |
Iron (Fe), % | 72.3 to 78.4 | |
0 to 0.35 |
Lead (Pb), % | 0 | |
1.5 to 2.5 |
Manganese (Mn), % | 0 to 0.7 | |
0 |
Nickel (Ni), % | 3.6 to 4.6 | |
0 |
Niobium (Nb), % | 0 to 0.35 | |
0 |
Nitrogen (N), % | 0 to 0.050 | |
0 |
Phosphorus (P), % | 0 to 0.035 | |
0 |
Silicon (Si), % | 0 to 1.0 | |
0 |
Sulfur (S), % | 0 to 0.030 | |
0 |
Tin (Sn), % | 0 | |
0 to 0.3 |
Zinc (Zn), % | 0 | |
35.9 to 43.5 |
Residuals, % | 0 | |
0 to 0.5 |