MakeItFrom.com
Menu (ESC)

ACI-ASTM CB7Cu-2 Steel vs. CC484K Bronze

ACI-ASTM CB7Cu-2 steel belongs to the iron alloys classification, while CC484K bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CB7Cu-2 steel and the bottom bar is CC484K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 300 to 420
100
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 5.7 to 11
11
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 75
41
Tensile Strength: Ultimate (UTS), MPa 960 to 1350
330
Tensile Strength: Yield (Proof), MPa 760 to 1180
200

Thermal Properties

Latent Heat of Fusion, J/g 280
190
Melting Completion (Liquidus), °C 1430
1000
Melting Onset (Solidus), °C 1380
870
Specific Heat Capacity, J/kg-K 480
370
Thermal Conductivity, W/m-K 17
70
Thermal Expansion, µm/m-K 11
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
9.1
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
9.3

Otherwise Unclassified Properties

Base Metal Price, % relative 13
37
Density, g/cm3 7.8
8.7
Embodied Carbon, kg CO2/kg material 2.6
3.9
Embodied Energy, MJ/kg 38
64
Embodied Water, L/kg 130
400

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 71 to 120
32
Resilience: Unit (Modulus of Resilience), kJ/m3 1510 to 3600
180
Stiffness to Weight: Axial, points 14
6.9
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 34 to 48
10
Strength to Weight: Bending, points 28 to 35
12
Thermal Diffusivity, mm2/s 4.6
22
Thermal Shock Resistance, points 32 to 45
12

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Antimony (Sb), % 0
0 to 0.1
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 14 to 15.5
0
Copper (Cu), % 2.5 to 3.2
84.5 to 87.5
Iron (Fe), % 73.6 to 79
0 to 0.2
Lead (Pb), % 0
0 to 0.3
Manganese (Mn), % 0 to 0.7
0 to 0.2
Nickel (Ni), % 4.5 to 5.5
1.5 to 2.5
Niobium (Nb), % 0 to 0.35
0
Nitrogen (N), % 0 to 0.050
0
Phosphorus (P), % 0 to 0.035
0.050 to 0.4
Silicon (Si), % 0 to 1.0
0 to 0.010
Sulfur (S), % 0 to 0.030
0 to 0.050
Tin (Sn), % 0
11 to 13
Zinc (Zn), % 0
0 to 0.4