MakeItFrom.com
Menu (ESC)

ACI-ASTM CB7Cu-2 Steel vs. Sintered 6061 Aluminum

ACI-ASTM CB7Cu-2 steel belongs to the iron alloys classification, while sintered 6061 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ACI-ASTM CB7Cu-2 steel and the bottom bar is sintered 6061 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
68
Elongation at Break, % 5.7 to 11
0.5 to 6.0
Fatigue Strength, MPa 420 to 590
32 to 62
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
25
Tensile Strength: Ultimate (UTS), MPa 960 to 1350
83 to 210
Tensile Strength: Yield (Proof), MPa 760 to 1180
62 to 190

Thermal Properties

Latent Heat of Fusion, J/g 280
400
Melting Completion (Liquidus), °C 1430
640
Melting Onset (Solidus), °C 1380
610
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 17
200
Thermal Expansion, µm/m-K 11
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
52
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
170

Otherwise Unclassified Properties

Base Metal Price, % relative 13
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 2.6
8.3
Embodied Energy, MJ/kg 38
150
Embodied Water, L/kg 130
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 71 to 120
0.68 to 7.0
Resilience: Unit (Modulus of Resilience), kJ/m3 1510 to 3600
28 to 280
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 34 to 48
8.6 to 21
Strength to Weight: Bending, points 28 to 35
16 to 29
Thermal Diffusivity, mm2/s 4.6
81
Thermal Shock Resistance, points 32 to 45
3.8 to 9.4

Alloy Composition

Aluminum (Al), % 0
96 to 99.4
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 14 to 15.5
0
Copper (Cu), % 2.5 to 3.2
0 to 0.5
Iron (Fe), % 73.6 to 79
0
Magnesium (Mg), % 0
0.4 to 1.2
Manganese (Mn), % 0 to 0.7
0
Nickel (Ni), % 4.5 to 5.5
0
Niobium (Nb), % 0 to 0.35
0
Nitrogen (N), % 0 to 0.050
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 1.0
0.2 to 0.8
Sulfur (S), % 0 to 0.030
0
Residuals, % 0
0 to 1.5

Comparable Variants