MakeItFrom.com
Menu (ESC)

ACI-ASTM CB7Cu-2 Steel vs. C14520 Copper

ACI-ASTM CB7Cu-2 steel belongs to the iron alloys classification, while C14520 copper belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CB7Cu-2 steel and the bottom bar is C14520 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 5.7 to 11
9.0 to 9.6
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 75
43
Tensile Strength: Ultimate (UTS), MPa 960 to 1350
290 to 330
Tensile Strength: Yield (Proof), MPa 760 to 1180
230 to 250

Thermal Properties

Latent Heat of Fusion, J/g 280
210
Melting Completion (Liquidus), °C 1430
1080
Melting Onset (Solidus), °C 1380
1050
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 17
320
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
85
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
85

Otherwise Unclassified Properties

Base Metal Price, % relative 13
33
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 2.6
2.6
Embodied Energy, MJ/kg 38
42
Embodied Water, L/kg 130
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 71 to 120
24 to 29
Resilience: Unit (Modulus of Resilience), kJ/m3 1510 to 3600
240 to 280
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 34 to 48
9.0 to 10
Strength to Weight: Bending, points 28 to 35
11 to 12
Thermal Diffusivity, mm2/s 4.6
94
Thermal Shock Resistance, points 32 to 45
10 to 12

Alloy Composition

Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 14 to 15.5
0
Copper (Cu), % 2.5 to 3.2
99.2 to 99.596
Iron (Fe), % 73.6 to 79
0
Manganese (Mn), % 0 to 0.7
0
Nickel (Ni), % 4.5 to 5.5
0
Niobium (Nb), % 0 to 0.35
0
Nitrogen (N), % 0 to 0.050
0
Phosphorus (P), % 0 to 0.035
0.0040 to 0.020
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Tellurium (Te), % 0
0.4 to 0.7