MakeItFrom.com
Menu (ESC)

ACI-ASTM CB7Cu-2 Steel vs. C34500 Brass

ACI-ASTM CB7Cu-2 steel belongs to the iron alloys classification, while C34500 brass belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CB7Cu-2 steel and the bottom bar is C34500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 5.7 to 11
12 to 28
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 75
40
Tensile Strength: Ultimate (UTS), MPa 960 to 1350
340 to 430
Tensile Strength: Yield (Proof), MPa 760 to 1180
120 to 180

Thermal Properties

Latent Heat of Fusion, J/g 280
170
Melting Completion (Liquidus), °C 1430
910
Melting Onset (Solidus), °C 1380
890
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 17
120
Thermal Expansion, µm/m-K 11
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
26
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
29

Otherwise Unclassified Properties

Base Metal Price, % relative 13
24
Density, g/cm3 7.8
8.2
Embodied Carbon, kg CO2/kg material 2.6
2.6
Embodied Energy, MJ/kg 38
45
Embodied Water, L/kg 130
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 71 to 120
42 to 75
Resilience: Unit (Modulus of Resilience), kJ/m3 1510 to 3600
69 to 160
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 34 to 48
12 to 15
Strength to Weight: Bending, points 28 to 35
13 to 16
Thermal Diffusivity, mm2/s 4.6
37
Thermal Shock Resistance, points 32 to 45
11 to 14

Alloy Composition

Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 14 to 15.5
0
Copper (Cu), % 2.5 to 3.2
62 to 65
Iron (Fe), % 73.6 to 79
0 to 0.15
Lead (Pb), % 0
1.5 to 2.5
Manganese (Mn), % 0 to 0.7
0
Nickel (Ni), % 4.5 to 5.5
0
Niobium (Nb), % 0 to 0.35
0
Nitrogen (N), % 0 to 0.050
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
32 to 36.5
Residuals, % 0
0 to 0.4