MakeItFrom.com
Menu (ESC)

ACI-ASTM CB7Cu-2 Steel vs. C70260 Copper

ACI-ASTM CB7Cu-2 steel belongs to the iron alloys classification, while C70260 copper belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CB7Cu-2 steel and the bottom bar is C70260 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 5.7 to 11
9.5 to 19
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 75
44
Tensile Strength: Ultimate (UTS), MPa 960 to 1350
520 to 760
Tensile Strength: Yield (Proof), MPa 760 to 1180
410 to 650

Thermal Properties

Latent Heat of Fusion, J/g 280
220
Melting Completion (Liquidus), °C 1430
1060
Melting Onset (Solidus), °C 1380
1040
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 17
160
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
40 to 50
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
40 to 51

Otherwise Unclassified Properties

Base Metal Price, % relative 13
31
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 2.6
2.7
Embodied Energy, MJ/kg 38
43
Embodied Water, L/kg 130
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 71 to 120
46 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 1510 to 3600
710 to 1810
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 34 to 48
16 to 24
Strength to Weight: Bending, points 28 to 35
16 to 21
Thermal Diffusivity, mm2/s 4.6
45
Thermal Shock Resistance, points 32 to 45
18 to 27

Alloy Composition

Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 14 to 15.5
0
Copper (Cu), % 2.5 to 3.2
95.8 to 98.8
Iron (Fe), % 73.6 to 79
0
Manganese (Mn), % 0 to 0.7
0
Nickel (Ni), % 4.5 to 5.5
1.0 to 3.0
Niobium (Nb), % 0 to 0.35
0
Nitrogen (N), % 0 to 0.050
0
Phosphorus (P), % 0 to 0.035
0 to 0.010
Silicon (Si), % 0 to 1.0
0.2 to 0.7
Sulfur (S), % 0 to 0.030
0
Residuals, % 0
0 to 0.5