MakeItFrom.com
Menu (ESC)

ACI-ASTM CB7Cu-2 Steel vs. C72900 Copper-nickel

ACI-ASTM CB7Cu-2 steel belongs to the iron alloys classification, while C72900 copper-nickel belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CB7Cu-2 steel and the bottom bar is C72900 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 5.7 to 11
6.0 to 20
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 75
45
Tensile Strength: Ultimate (UTS), MPa 960 to 1350
870 to 1080
Tensile Strength: Yield (Proof), MPa 760 to 1180
700 to 920

Thermal Properties

Latent Heat of Fusion, J/g 280
210
Melting Completion (Liquidus), °C 1430
1120
Melting Onset (Solidus), °C 1380
950
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 17
29
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 13
39
Density, g/cm3 7.8
8.8
Embodied Carbon, kg CO2/kg material 2.6
4.6
Embodied Energy, MJ/kg 38
72
Embodied Water, L/kg 130
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 71 to 120
49 to 210
Resilience: Unit (Modulus of Resilience), kJ/m3 1510 to 3600
2030 to 3490
Stiffness to Weight: Axial, points 14
7.6
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 34 to 48
27 to 34
Strength to Weight: Bending, points 28 to 35
23 to 27
Thermal Diffusivity, mm2/s 4.6
8.6
Thermal Shock Resistance, points 32 to 45
31 to 38

Alloy Composition

Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 14 to 15.5
0
Copper (Cu), % 2.5 to 3.2
74.1 to 78
Iron (Fe), % 73.6 to 79
0 to 0.5
Lead (Pb), % 0
0 to 0.020
Magnesium (Mg), % 0
0 to 0.15
Manganese (Mn), % 0 to 0.7
0 to 0.3
Nickel (Ni), % 4.5 to 5.5
14.5 to 15.5
Niobium (Nb), % 0 to 0.35
0 to 0.1
Nitrogen (N), % 0 to 0.050
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
7.5 to 8.5
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.3