MakeItFrom.com
Menu (ESC)

ACI-ASTM CB7Cu-2 Steel vs. C86700 Bronze

ACI-ASTM CB7Cu-2 steel belongs to the iron alloys classification, while C86700 bronze belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CB7Cu-2 steel and the bottom bar is C86700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 5.7 to 11
17
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 75
41
Tensile Strength: Ultimate (UTS), MPa 960 to 1350
630
Tensile Strength: Yield (Proof), MPa 760 to 1180
250

Thermal Properties

Latent Heat of Fusion, J/g 280
180
Melting Completion (Liquidus), °C 1430
880
Melting Onset (Solidus), °C 1380
860
Specific Heat Capacity, J/kg-K 480
400
Thermal Conductivity, W/m-K 17
89
Thermal Expansion, µm/m-K 11
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
17
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
19

Otherwise Unclassified Properties

Base Metal Price, % relative 13
23
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 2.6
2.9
Embodied Energy, MJ/kg 38
49
Embodied Water, L/kg 130
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 71 to 120
86
Resilience: Unit (Modulus of Resilience), kJ/m3 1510 to 3600
290
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 34 to 48
22
Strength to Weight: Bending, points 28 to 35
21
Thermal Diffusivity, mm2/s 4.6
28
Thermal Shock Resistance, points 32 to 45
21

Alloy Composition

Aluminum (Al), % 0
1.0 to 3.0
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 14 to 15.5
0
Copper (Cu), % 2.5 to 3.2
55 to 60
Iron (Fe), % 73.6 to 79
1.0 to 3.0
Lead (Pb), % 0
0.5 to 1.5
Manganese (Mn), % 0 to 0.7
1.0 to 3.5
Nickel (Ni), % 4.5 to 5.5
0 to 1.0
Niobium (Nb), % 0 to 0.35
0
Nitrogen (N), % 0 to 0.050
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 1.5
Zinc (Zn), % 0
30 to 38
Residuals, % 0
0 to 1.0