MakeItFrom.com
Menu (ESC)

ACI-ASTM CC50 Steel vs. 201.0 Aluminum

ACI-ASTM CC50 steel belongs to the iron alloys classification, while 201.0 aluminum belongs to the aluminum alloys. There are 24 material properties with values for both materials. Properties with values for just one material (12, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ACI-ASTM CC50 steel and the bottom bar is 201.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
95 to 140
Elastic (Young's, Tensile) Modulus, GPa 200
71
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 80
27
Tensile Strength: Ultimate (UTS), MPa 430
370 to 470

Thermal Properties

Latent Heat of Fusion, J/g 300
390
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1420
650
Melting Onset (Solidus), °C 1370
570
Specific Heat Capacity, J/kg-K 490
870
Thermal Conductivity, W/m-K 17
120
Thermal Expansion, µm/m-K 11
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
30 to 33
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
87 to 97

Otherwise Unclassified Properties

Base Metal Price, % relative 14
38
Density, g/cm3 7.6
3.1
Embodied Carbon, kg CO2/kg material 2.7
8.7
Embodied Energy, MJ/kg 39
160

Common Calculations

Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 26
45
Strength to Weight: Axial, points 16
33 to 42
Strength to Weight: Bending, points 17
37 to 44
Thermal Diffusivity, mm2/s 4.5
45
Thermal Shock Resistance, points 14
19 to 25

Alloy Composition

Aluminum (Al), % 0
92.1 to 95.1
Carbon (C), % 0 to 0.5
0
Chromium (Cr), % 26 to 30
0
Copper (Cu), % 0
4.0 to 5.2
Iron (Fe), % 62.9 to 74
0 to 0.15
Magnesium (Mg), % 0
0.15 to 0.55
Manganese (Mn), % 0 to 1.0
0.2 to 0.5
Nickel (Ni), % 0 to 4.0
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.5
0 to 0.1
Silver (Ag), % 0
0.4 to 1.0
Sulfur (S), % 0 to 0.040
0
Titanium (Ti), % 0
0.15 to 0.35
Residuals, % 0
0 to 0.1