MakeItFrom.com
Menu (ESC)

ACI-ASTM CC50 Steel vs. 2218 Aluminum

ACI-ASTM CC50 steel belongs to the iron alloys classification, while 2218 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ACI-ASTM CC50 steel and the bottom bar is 2218 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
95 to 110
Elastic (Young's, Tensile) Modulus, GPa 200
73
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 80
27
Tensile Strength: Ultimate (UTS), MPa 430
330 to 430

Thermal Properties

Latent Heat of Fusion, J/g 300
390
Maximum Temperature: Mechanical, °C 1100
220
Melting Completion (Liquidus), °C 1420
640
Melting Onset (Solidus), °C 1370
510
Specific Heat Capacity, J/kg-K 490
870
Thermal Conductivity, W/m-K 17
140
Thermal Expansion, µm/m-K 11
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
37
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
110

Otherwise Unclassified Properties

Base Metal Price, % relative 14
11
Density, g/cm3 7.6
3.1
Embodied Carbon, kg CO2/kg material 2.7
8.2
Embodied Energy, MJ/kg 39
150
Embodied Water, L/kg 170
1130

Common Calculations

Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 26
45
Strength to Weight: Axial, points 16
30 to 39
Strength to Weight: Bending, points 17
34 to 41
Thermal Diffusivity, mm2/s 4.5
52
Thermal Shock Resistance, points 14
15 to 19

Alloy Composition

Aluminum (Al), % 0
88.8 to 93.6
Carbon (C), % 0 to 0.5
0
Chromium (Cr), % 26 to 30
0 to 0.1
Copper (Cu), % 0
3.5 to 4.5
Iron (Fe), % 62.9 to 74
0 to 1.0
Magnesium (Mg), % 0
1.2 to 1.8
Manganese (Mn), % 0 to 1.0
0 to 0.2
Nickel (Ni), % 0 to 4.0
1.7 to 2.3
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.5
0 to 0.9
Sulfur (S), % 0 to 0.040
0
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15