MakeItFrom.com
Menu (ESC)

ACI-ASTM CC50 Steel vs. 390.0 Aluminum

ACI-ASTM CC50 steel belongs to the iron alloys classification, while 390.0 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ACI-ASTM CC50 steel and the bottom bar is 390.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
120
Elastic (Young's, Tensile) Modulus, GPa 200
75
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 80
28
Tensile Strength: Ultimate (UTS), MPa 430
280 to 300

Thermal Properties

Latent Heat of Fusion, J/g 300
640
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1420
650
Melting Onset (Solidus), °C 1370
560
Specific Heat Capacity, J/kg-K 490
880
Thermal Conductivity, W/m-K 17
130
Thermal Expansion, µm/m-K 11
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
24 to 25
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
79 to 83

Otherwise Unclassified Properties

Base Metal Price, % relative 14
11
Density, g/cm3 7.6
2.7
Embodied Carbon, kg CO2/kg material 2.7
7.3
Embodied Energy, MJ/kg 39
130
Embodied Water, L/kg 170
950

Common Calculations

Stiffness to Weight: Axial, points 15
15
Stiffness to Weight: Bending, points 26
52
Strength to Weight: Axial, points 16
28 to 30
Strength to Weight: Bending, points 17
35 to 36
Thermal Diffusivity, mm2/s 4.5
56
Thermal Shock Resistance, points 14
14 to 15

Alloy Composition

Aluminum (Al), % 0
74.5 to 79.6
Carbon (C), % 0 to 0.5
0
Chromium (Cr), % 26 to 30
0
Copper (Cu), % 0
4.0 to 5.0
Iron (Fe), % 62.9 to 74
0 to 1.3
Magnesium (Mg), % 0
0.45 to 0.65
Manganese (Mn), % 0 to 1.0
0 to 0.1
Nickel (Ni), % 0 to 4.0
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.5
16 to 18
Sulfur (S), % 0 to 0.040
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.2