MakeItFrom.com
Menu (ESC)

ACI-ASTM CC50 Steel vs. 5383 Aluminum

ACI-ASTM CC50 steel belongs to the iron alloys classification, while 5383 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ACI-ASTM CC50 steel and the bottom bar is 5383 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
85 to 110
Elastic (Young's, Tensile) Modulus, GPa 200
68
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 80
26
Tensile Strength: Ultimate (UTS), MPa 430
310 to 370

Thermal Properties

Latent Heat of Fusion, J/g 300
390
Maximum Temperature: Corrosion, °C 460
65
Maximum Temperature: Mechanical, °C 1100
200
Melting Completion (Liquidus), °C 1420
650
Melting Onset (Solidus), °C 1370
540
Specific Heat Capacity, J/kg-K 490
900
Thermal Conductivity, W/m-K 17
130
Thermal Expansion, µm/m-K 11
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
29
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
97

Otherwise Unclassified Properties

Base Metal Price, % relative 14
9.5
Density, g/cm3 7.6
2.7
Embodied Carbon, kg CO2/kg material 2.7
9.0
Embodied Energy, MJ/kg 39
160
Embodied Water, L/kg 170
1170

Common Calculations

Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 26
50
Strength to Weight: Axial, points 16
32 to 38
Strength to Weight: Bending, points 17
38 to 42
Thermal Diffusivity, mm2/s 4.5
51
Thermal Shock Resistance, points 14
14 to 16

Alloy Composition

Aluminum (Al), % 0
92 to 95.3
Carbon (C), % 0 to 0.5
0
Chromium (Cr), % 26 to 30
0 to 0.25
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 62.9 to 74
0 to 0.25
Magnesium (Mg), % 0
4.0 to 5.2
Manganese (Mn), % 0 to 1.0
0.7 to 1.0
Nickel (Ni), % 0 to 4.0
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.5
0 to 0.25
Sulfur (S), % 0 to 0.040
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.4
Zirconium (Zr), % 0
0 to 0.2
Residuals, % 0
0 to 0.15