MakeItFrom.com
Menu (ESC)

ACI-ASTM CC50 Steel vs. 6262A Aluminum

ACI-ASTM CC50 steel belongs to the iron alloys classification, while 6262A aluminum belongs to the aluminum alloys. There are 24 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ACI-ASTM CC50 steel and the bottom bar is 6262A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
68
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 80
26
Tensile Strength: Ultimate (UTS), MPa 430
310 to 410

Thermal Properties

Latent Heat of Fusion, J/g 300
400
Maximum Temperature: Mechanical, °C 1100
160
Melting Completion (Liquidus), °C 1420
640
Melting Onset (Solidus), °C 1370
580
Specific Heat Capacity, J/kg-K 490
890
Thermal Conductivity, W/m-K 17
170
Thermal Expansion, µm/m-K 11
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
45
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
140

Otherwise Unclassified Properties

Base Metal Price, % relative 14
11
Density, g/cm3 7.6
2.8
Embodied Carbon, kg CO2/kg material 2.7
8.4
Embodied Energy, MJ/kg 39
150
Embodied Water, L/kg 170
1190

Common Calculations

Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 26
49
Strength to Weight: Axial, points 16
31 to 41
Strength to Weight: Bending, points 17
36 to 44
Thermal Diffusivity, mm2/s 4.5
67
Thermal Shock Resistance, points 14
14 to 18

Alloy Composition

Aluminum (Al), % 0
94.2 to 97.8
Bismuth (Bi), % 0
0.4 to 0.9
Carbon (C), % 0 to 0.5
0
Chromium (Cr), % 26 to 30
0.040 to 0.14
Copper (Cu), % 0
0.15 to 0.4
Iron (Fe), % 62.9 to 74
0 to 0.7
Magnesium (Mg), % 0
0.8 to 1.2
Manganese (Mn), % 0 to 1.0
0 to 0.15
Nickel (Ni), % 0 to 4.0
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.5
0.4 to 0.8
Sulfur (S), % 0 to 0.040
0
Tin (Sn), % 0
0.4 to 1.0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15