MakeItFrom.com
Menu (ESC)

ACI-ASTM CC50 Steel vs. 7022 Aluminum

ACI-ASTM CC50 steel belongs to the iron alloys classification, while 7022 aluminum belongs to the aluminum alloys. There are 24 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ACI-ASTM CC50 steel and the bottom bar is 7022 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
70
Poisson's Ratio 0.27
0.32
Shear Modulus, GPa 80
26
Tensile Strength: Ultimate (UTS), MPa 430
490 to 540

Thermal Properties

Latent Heat of Fusion, J/g 300
380
Maximum Temperature: Mechanical, °C 1100
200
Melting Completion (Liquidus), °C 1420
640
Melting Onset (Solidus), °C 1370
480
Specific Heat Capacity, J/kg-K 490
870
Thermal Conductivity, W/m-K 17
140
Thermal Expansion, µm/m-K 11
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
21
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
65

Otherwise Unclassified Properties

Base Metal Price, % relative 14
10
Density, g/cm3 7.6
2.9
Embodied Carbon, kg CO2/kg material 2.7
8.5
Embodied Energy, MJ/kg 39
150
Embodied Water, L/kg 170
1130

Common Calculations

Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 26
47
Strength to Weight: Axial, points 16
47 to 51
Strength to Weight: Bending, points 17
47 to 50
Thermal Diffusivity, mm2/s 4.5
54
Thermal Shock Resistance, points 14
21 to 23

Alloy Composition

Aluminum (Al), % 0
87.9 to 92.4
Carbon (C), % 0 to 0.5
0
Chromium (Cr), % 26 to 30
0.1 to 0.3
Copper (Cu), % 0
0.5 to 1.0
Iron (Fe), % 62.9 to 74
0 to 0.5
Magnesium (Mg), % 0
2.6 to 3.7
Manganese (Mn), % 0 to 1.0
0.1 to 0.4
Nickel (Ni), % 0 to 4.0
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.5
0 to 0.5
Sulfur (S), % 0 to 0.040
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
4.3 to 5.2
Zirconium (Zr), % 0
0 to 0.2
Residuals, % 0
0 to 0.15