MakeItFrom.com
Menu (ESC)

ACI-ASTM CC50 Steel vs. EN AC-21100 Aluminum

ACI-ASTM CC50 steel belongs to the iron alloys classification, while EN AC-21100 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ACI-ASTM CC50 steel and the bottom bar is EN AC-21100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
100 to 110
Elastic (Young's, Tensile) Modulus, GPa 200
71
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 80
27
Tensile Strength: Ultimate (UTS), MPa 430
340 to 350

Thermal Properties

Latent Heat of Fusion, J/g 300
390
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1420
670
Melting Onset (Solidus), °C 1370
550
Specific Heat Capacity, J/kg-K 490
880
Thermal Conductivity, W/m-K 17
130
Thermal Expansion, µm/m-K 11
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
34
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
100

Otherwise Unclassified Properties

Base Metal Price, % relative 14
11
Density, g/cm3 7.6
3.0
Embodied Carbon, kg CO2/kg material 2.7
8.0
Embodied Energy, MJ/kg 39
150
Embodied Water, L/kg 170
1150

Common Calculations

Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 26
46
Strength to Weight: Axial, points 16
31 to 33
Strength to Weight: Bending, points 17
36 to 37
Thermal Diffusivity, mm2/s 4.5
48
Thermal Shock Resistance, points 14
15

Alloy Composition

Aluminum (Al), % 0
93.4 to 95.7
Carbon (C), % 0 to 0.5
0
Chromium (Cr), % 26 to 30
0
Copper (Cu), % 0
4.2 to 5.2
Iron (Fe), % 62.9 to 74
0 to 0.19
Manganese (Mn), % 0 to 1.0
0 to 0.55
Nickel (Ni), % 0 to 4.0
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.5
0 to 0.18
Sulfur (S), % 0 to 0.040
0
Titanium (Ti), % 0
0.15 to 0.3
Zinc (Zn), % 0
0 to 0.070
Residuals, % 0
0 to 0.1