MakeItFrom.com
Menu (ESC)

ACI-ASTM CD3MCuN Steel vs. 2618A Aluminum

ACI-ASTM CD3MCuN steel belongs to the iron alloys classification, while 2618A aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ACI-ASTM CD3MCuN steel and the bottom bar is 2618A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
72
Elongation at Break, % 29
4.5
Fatigue Strength, MPa 370
120
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 80
27
Tensile Strength: Ultimate (UTS), MPa 790
440
Tensile Strength: Yield (Proof), MPa 500
410

Thermal Properties

Latent Heat of Fusion, J/g 300
390
Maximum Temperature: Mechanical, °C 1100
230
Melting Completion (Liquidus), °C 1440
670
Melting Onset (Solidus), °C 1390
560
Specific Heat Capacity, J/kg-K 480
880
Thermal Conductivity, W/m-K 15
150
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
37
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
110

Otherwise Unclassified Properties

Base Metal Price, % relative 20
11
Density, g/cm3 7.8
3.0
Embodied Carbon, kg CO2/kg material 3.9
8.4
Embodied Energy, MJ/kg 54
150
Embodied Water, L/kg 180
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
19
Resilience: Unit (Modulus of Resilience), kJ/m3 620
1180
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 25
47
Strength to Weight: Axial, points 28
41
Strength to Weight: Bending, points 24
44
Thermal Diffusivity, mm2/s 4.1
59
Thermal Shock Resistance, points 22
19

Alloy Composition

Aluminum (Al), % 0
91.5 to 95.2
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 24 to 26.7
0
Copper (Cu), % 1.4 to 1.9
1.8 to 2.7
Iron (Fe), % 58.2 to 65.9
0.9 to 1.4
Magnesium (Mg), % 0
1.2 to 1.8
Manganese (Mn), % 0 to 1.2
0 to 0.25
Molybdenum (Mo), % 2.9 to 3.8
0
Nickel (Ni), % 5.6 to 6.7
0.8 to 1.4
Nitrogen (N), % 0.22 to 0.33
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.1
0.15 to 0.25
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.15
Zirconium (Zr), % 0
0 to 0.25
Residuals, % 0
0 to 0.15