MakeItFrom.com
Menu (ESC)

ACI-ASTM CD3MCuN Steel vs. AWS ER110S-1

Both ACI-ASTM CD3MCuN steel and AWS ER110S-1 are iron alloys. They have 66% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CD3MCuN steel and the bottom bar is AWS ER110S-1.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 29
17
Poisson's Ratio 0.27
0.29
Shear Modulus, GPa 80
73
Tensile Strength: Ultimate (UTS), MPa 790
870
Tensile Strength: Yield (Proof), MPa 500
740

Thermal Properties

Latent Heat of Fusion, J/g 300
250
Melting Completion (Liquidus), °C 1440
1460
Melting Onset (Solidus), °C 1390
1410
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 15
47
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 20
4.0
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 3.9
1.8
Embodied Energy, MJ/kg 54
25
Embodied Water, L/kg 180
55

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
140
Resilience: Unit (Modulus of Resilience), kJ/m3 620
1460
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 28
31
Strength to Weight: Bending, points 24
26
Thermal Diffusivity, mm2/s 4.1
13
Thermal Shock Resistance, points 22
26

Alloy Composition

Aluminum (Al), % 0
0 to 0.1
Carbon (C), % 0 to 0.030
0 to 0.090
Chromium (Cr), % 24 to 26.7
0 to 0.5
Copper (Cu), % 1.4 to 1.9
0 to 0.25
Iron (Fe), % 58.2 to 65.9
92.8 to 96.3
Manganese (Mn), % 0 to 1.2
1.4 to 1.8
Molybdenum (Mo), % 2.9 to 3.8
0.25 to 0.55
Nickel (Ni), % 5.6 to 6.7
1.9 to 2.6
Nitrogen (N), % 0.22 to 0.33
0
Phosphorus (P), % 0 to 0.030
0 to 0.010
Silicon (Si), % 0 to 1.1
0.2 to 0.55
Sulfur (S), % 0 to 0.030
0 to 0.010
Titanium (Ti), % 0
0 to 0.1
Vanadium (V), % 0
0 to 0.040
Zirconium (Zr), % 0
0 to 0.1
Residuals, % 0
0 to 0.5