MakeItFrom.com
Menu (ESC)

ACI-ASTM CD3MCuN Steel vs. EN 1.8896 Steel

Both ACI-ASTM CD3MCuN steel and EN 1.8896 steel are iron alloys. They have 63% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CD3MCuN steel and the bottom bar is EN 1.8896 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 29
24
Fatigue Strength, MPa 370
280
Poisson's Ratio 0.27
0.29
Shear Modulus, GPa 80
73
Tensile Strength: Ultimate (UTS), MPa 790
510
Tensile Strength: Yield (Proof), MPa 500
390

Thermal Properties

Latent Heat of Fusion, J/g 300
250
Maximum Temperature: Mechanical, °C 1100
400
Melting Completion (Liquidus), °C 1440
1460
Melting Onset (Solidus), °C 1390
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 15
49
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 20
2.2
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 3.9
1.6
Embodied Energy, MJ/kg 54
21
Embodied Water, L/kg 180
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
110
Resilience: Unit (Modulus of Resilience), kJ/m3 620
400
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 28
18
Strength to Weight: Bending, points 24
18
Thermal Diffusivity, mm2/s 4.1
13
Thermal Shock Resistance, points 22
15

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.060
Carbon (C), % 0 to 0.030
0 to 0.14
Chromium (Cr), % 24 to 26.7
0
Copper (Cu), % 1.4 to 1.9
0
Iron (Fe), % 58.2 to 65.9
97 to 99.98
Manganese (Mn), % 0 to 1.2
0 to 1.5
Molybdenum (Mo), % 2.9 to 3.8
0 to 0.2
Nickel (Ni), % 5.6 to 6.7
0 to 0.3
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0.22 to 0.33
0 to 0.020
Phosphorus (P), % 0 to 0.030
0 to 0.035
Silicon (Si), % 0 to 1.1
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0
0 to 0.050
Vanadium (V), % 0
0 to 0.1