MakeItFrom.com
Menu (ESC)

ACI-ASTM CD3MCuN Steel vs. EN AC-43100 Aluminum

ACI-ASTM CD3MCuN steel belongs to the iron alloys classification, while EN AC-43100 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ACI-ASTM CD3MCuN steel and the bottom bar is EN AC-43100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
71
Elongation at Break, % 29
1.1 to 2.5
Fatigue Strength, MPa 370
68 to 76
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 80
27
Tensile Strength: Ultimate (UTS), MPa 790
180 to 270
Tensile Strength: Yield (Proof), MPa 500
97 to 230

Thermal Properties

Latent Heat of Fusion, J/g 300
540
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1440
600
Melting Onset (Solidus), °C 1390
590
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 15
140
Thermal Expansion, µm/m-K 13
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
37
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
130

Otherwise Unclassified Properties

Base Metal Price, % relative 20
9.5
Density, g/cm3 7.8
2.6
Embodied Carbon, kg CO2/kg material 3.9
7.8
Embodied Energy, MJ/kg 54
150
Embodied Water, L/kg 180
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
2.9 to 5.7
Resilience: Unit (Modulus of Resilience), kJ/m3 620
66 to 360
Stiffness to Weight: Axial, points 15
15
Stiffness to Weight: Bending, points 25
54
Strength to Weight: Axial, points 28
20 to 29
Strength to Weight: Bending, points 24
28 to 36
Thermal Diffusivity, mm2/s 4.1
60
Thermal Shock Resistance, points 22
8.6 to 12

Alloy Composition

Aluminum (Al), % 0
86.9 to 90.8
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 24 to 26.7
0
Copper (Cu), % 1.4 to 1.9
0 to 0.1
Iron (Fe), % 58.2 to 65.9
0 to 0.55
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0
0.2 to 0.45
Manganese (Mn), % 0 to 1.2
0 to 0.45
Molybdenum (Mo), % 2.9 to 3.8
0
Nickel (Ni), % 5.6 to 6.7
0 to 0.050
Nitrogen (N), % 0.22 to 0.33
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.1
9.0 to 11
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15