MakeItFrom.com
Menu (ESC)

ACI-ASTM CD3MCuN Steel vs. EN AC-46100 Aluminum

ACI-ASTM CD3MCuN steel belongs to the iron alloys classification, while EN AC-46100 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ACI-ASTM CD3MCuN steel and the bottom bar is EN AC-46100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
73
Elongation at Break, % 29
1.0
Fatigue Strength, MPa 370
110
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 80
28
Tensile Strength: Ultimate (UTS), MPa 790
270
Tensile Strength: Yield (Proof), MPa 500
160

Thermal Properties

Latent Heat of Fusion, J/g 300
550
Maximum Temperature: Mechanical, °C 1100
180
Melting Completion (Liquidus), °C 1440
600
Melting Onset (Solidus), °C 1390
540
Specific Heat Capacity, J/kg-K 480
890
Thermal Conductivity, W/m-K 15
110
Thermal Expansion, µm/m-K 13
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
28
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
90

Otherwise Unclassified Properties

Base Metal Price, % relative 20
10
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 3.9
7.6
Embodied Energy, MJ/kg 54
140
Embodied Water, L/kg 180
1030

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
2.3
Resilience: Unit (Modulus of Resilience), kJ/m3 620
170
Stiffness to Weight: Axial, points 15
15
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 28
27
Strength to Weight: Bending, points 24
34
Thermal Diffusivity, mm2/s 4.1
44
Thermal Shock Resistance, points 22
12

Alloy Composition

Aluminum (Al), % 0
80.4 to 88.5
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 24 to 26.7
0 to 0.15
Copper (Cu), % 1.4 to 1.9
1.5 to 2.5
Iron (Fe), % 58.2 to 65.9
0 to 1.1
Lead (Pb), % 0
0 to 0.25
Magnesium (Mg), % 0
0 to 0.3
Manganese (Mn), % 0 to 1.2
0 to 0.55
Molybdenum (Mo), % 2.9 to 3.8
0
Nickel (Ni), % 5.6 to 6.7
0 to 0.45
Nitrogen (N), % 0.22 to 0.33
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.1
10 to 12
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 1.7
Residuals, % 0
0 to 0.25