MakeItFrom.com
Menu (ESC)

ACI-ASTM CD3MCuN Steel vs. Grade 29 Titanium

ACI-ASTM CD3MCuN steel belongs to the iron alloys classification, while grade 29 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CD3MCuN steel and the bottom bar is grade 29 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 29
6.8 to 11
Fatigue Strength, MPa 370
460 to 510
Poisson's Ratio 0.27
0.32
Shear Modulus, GPa 80
40
Tensile Strength: Ultimate (UTS), MPa 790
930 to 940
Tensile Strength: Yield (Proof), MPa 500
850 to 870

Thermal Properties

Latent Heat of Fusion, J/g 300
410
Maximum Temperature: Mechanical, °C 1100
340
Melting Completion (Liquidus), °C 1440
1610
Melting Onset (Solidus), °C 1390
1560
Specific Heat Capacity, J/kg-K 480
560
Thermal Conductivity, W/m-K 15
7.3
Thermal Expansion, µm/m-K 13
9.3

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 20
36
Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 3.9
39
Embodied Energy, MJ/kg 54
640
Embodied Water, L/kg 180
410

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
62 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 620
3420 to 3540
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 28
58 to 59
Strength to Weight: Bending, points 24
47 to 48
Thermal Diffusivity, mm2/s 4.1
2.9
Thermal Shock Resistance, points 22
68 to 69

Alloy Composition

Aluminum (Al), % 0
5.5 to 6.5
Carbon (C), % 0 to 0.030
0 to 0.080
Chromium (Cr), % 24 to 26.7
0
Copper (Cu), % 1.4 to 1.9
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 58.2 to 65.9
0 to 0.25
Manganese (Mn), % 0 to 1.2
0
Molybdenum (Mo), % 2.9 to 3.8
0
Nickel (Ni), % 5.6 to 6.7
0
Nitrogen (N), % 0.22 to 0.33
0 to 0.030
Oxygen (O), % 0
0 to 0.13
Phosphorus (P), % 0 to 0.030
0
Ruthenium (Ru), % 0
0.080 to 0.14
Silicon (Si), % 0 to 1.1
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
88 to 90.9
Vanadium (V), % 0
3.5 to 4.5
Residuals, % 0
0 to 0.4