MakeItFrom.com
Menu (ESC)

ACI-ASTM CD3MCuN Steel vs. Sintered 6061 Aluminum

ACI-ASTM CD3MCuN steel belongs to the iron alloys classification, while sintered 6061 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ACI-ASTM CD3MCuN steel and the bottom bar is sintered 6061 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 29
0.5 to 6.0
Fatigue Strength, MPa 370
32 to 62
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 80
25
Tensile Strength: Ultimate (UTS), MPa 790
83 to 210
Tensile Strength: Yield (Proof), MPa 500
62 to 190

Thermal Properties

Latent Heat of Fusion, J/g 300
400
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1440
640
Melting Onset (Solidus), °C 1390
610
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 15
200
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
52
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
170

Otherwise Unclassified Properties

Base Metal Price, % relative 20
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 3.9
8.3
Embodied Energy, MJ/kg 54
150
Embodied Water, L/kg 180
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
0.68 to 7.0
Resilience: Unit (Modulus of Resilience), kJ/m3 620
28 to 280
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 28
8.6 to 21
Strength to Weight: Bending, points 24
16 to 29
Thermal Diffusivity, mm2/s 4.1
81
Thermal Shock Resistance, points 22
3.8 to 9.4

Alloy Composition

Aluminum (Al), % 0
96 to 99.4
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 24 to 26.7
0
Copper (Cu), % 1.4 to 1.9
0 to 0.5
Iron (Fe), % 58.2 to 65.9
0
Magnesium (Mg), % 0
0.4 to 1.2
Manganese (Mn), % 0 to 1.2
0
Molybdenum (Mo), % 2.9 to 3.8
0
Nickel (Ni), % 5.6 to 6.7
0
Nitrogen (N), % 0.22 to 0.33
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.1
0.2 to 0.8
Sulfur (S), % 0 to 0.030
0
Residuals, % 0
0 to 1.5