MakeItFrom.com
Menu (ESC)

ACI-ASTM CD3MCuN Steel vs. C64700 Bronze

ACI-ASTM CD3MCuN steel belongs to the iron alloys classification, while C64700 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CD3MCuN steel and the bottom bar is C64700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 29
9.0
Poisson's Ratio 0.27
0.34
Shear Modulus, GPa 80
44
Tensile Strength: Ultimate (UTS), MPa 790
660
Tensile Strength: Yield (Proof), MPa 500
560

Thermal Properties

Latent Heat of Fusion, J/g 300
220
Maximum Temperature: Mechanical, °C 1100
200
Melting Completion (Liquidus), °C 1440
1090
Melting Onset (Solidus), °C 1390
1030
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 15
210
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
38
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
38

Otherwise Unclassified Properties

Base Metal Price, % relative 20
31
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 3.9
2.7
Embodied Energy, MJ/kg 54
43
Embodied Water, L/kg 180
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
57
Resilience: Unit (Modulus of Resilience), kJ/m3 620
1370
Stiffness to Weight: Axial, points 15
7.3
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 28
21
Strength to Weight: Bending, points 24
19
Thermal Diffusivity, mm2/s 4.1
59
Thermal Shock Resistance, points 22
24

Alloy Composition

Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 24 to 26.7
0
Copper (Cu), % 1.4 to 1.9
95.8 to 98
Iron (Fe), % 58.2 to 65.9
0 to 0.1
Lead (Pb), % 0
0 to 0.1
Manganese (Mn), % 0 to 1.2
0
Molybdenum (Mo), % 2.9 to 3.8
0
Nickel (Ni), % 5.6 to 6.7
1.6 to 2.2
Nitrogen (N), % 0.22 to 0.33
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.1
0.4 to 0.8
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.5