MakeItFrom.com
Menu (ESC)

ACI-ASTM CD3MCuN Steel vs. C86200 Bronze

ACI-ASTM CD3MCuN steel belongs to the iron alloys classification, while C86200 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CD3MCuN steel and the bottom bar is C86200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 29
21
Poisson's Ratio 0.27
0.32
Shear Modulus, GPa 80
42
Tensile Strength: Ultimate (UTS), MPa 790
710
Tensile Strength: Yield (Proof), MPa 500
350

Thermal Properties

Latent Heat of Fusion, J/g 300
190
Maximum Temperature: Mechanical, °C 1100
160
Melting Completion (Liquidus), °C 1440
940
Melting Onset (Solidus), °C 1390
900
Specific Heat Capacity, J/kg-K 480
410
Thermal Conductivity, W/m-K 15
35
Thermal Expansion, µm/m-K 13
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
9.0

Otherwise Unclassified Properties

Base Metal Price, % relative 20
23
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 3.9
2.9
Embodied Energy, MJ/kg 54
49
Embodied Water, L/kg 180
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
120
Resilience: Unit (Modulus of Resilience), kJ/m3 620
540
Stiffness to Weight: Axial, points 15
7.8
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 28
25
Strength to Weight: Bending, points 24
22
Thermal Diffusivity, mm2/s 4.1
11
Thermal Shock Resistance, points 22
23

Alloy Composition

Aluminum (Al), % 0
3.0 to 4.9
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 24 to 26.7
0
Copper (Cu), % 1.4 to 1.9
60 to 66
Iron (Fe), % 58.2 to 65.9
2.0 to 4.0
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0 to 1.2
2.5 to 5.0
Molybdenum (Mo), % 2.9 to 3.8
0
Nickel (Ni), % 5.6 to 6.7
0 to 1.0
Nitrogen (N), % 0.22 to 0.33
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.1
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
22 to 28
Residuals, % 0
0 to 1.0