MakeItFrom.com
Menu (ESC)

ACI-ASTM CD3MN Steel vs. EN 1.0044 Steel

Both ACI-ASTM CD3MN steel and EN 1.0044 steel are iron alloys. They have 68% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CD3MN steel and the bottom bar is EN 1.0044 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 29
21
Fatigue Strength, MPa 340
180
Poisson's Ratio 0.27
0.29
Shear Modulus, GPa 79
73
Tensile Strength: Ultimate (UTS), MPa 710
470
Tensile Strength: Yield (Proof), MPa 460
250

Thermal Properties

Latent Heat of Fusion, J/g 300
250
Maximum Temperature: Mechanical, °C 1060
400
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1400
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 16
51
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 18
1.9
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 3.6
1.4
Embodied Energy, MJ/kg 50
18
Embodied Water, L/kg 160
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
85
Resilience: Unit (Modulus of Resilience), kJ/m3 530
170
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 25
17
Strength to Weight: Bending, points 23
17
Thermal Diffusivity, mm2/s 4.3
14
Thermal Shock Resistance, points 20
15

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.25
Chromium (Cr), % 21 to 23.5
0
Copper (Cu), % 0 to 1.0
0 to 0.6
Iron (Fe), % 62.6 to 71.9
97.4 to 100
Manganese (Mn), % 0 to 1.5
0 to 1.6
Molybdenum (Mo), % 2.5 to 3.5
0
Nickel (Ni), % 4.5 to 6.5
0
Nitrogen (N), % 0.1 to 0.3
0 to 0.014
Phosphorus (P), % 0 to 0.040
0 to 0.045
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.020
0 to 0.045