MakeItFrom.com
Menu (ESC)

ACI-ASTM CD3MN Steel vs. EN 1.0259 Steel

Both ACI-ASTM CD3MN steel and EN 1.0259 steel are iron alloys. They have 69% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CD3MN steel and the bottom bar is EN 1.0259 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 29
23
Fatigue Strength, MPa 340
200
Poisson's Ratio 0.27
0.29
Shear Modulus, GPa 79
73
Tensile Strength: Ultimate (UTS), MPa 710
490
Tensile Strength: Yield (Proof), MPa 460
280

Thermal Properties

Latent Heat of Fusion, J/g 300
250
Maximum Temperature: Mechanical, °C 1060
400
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1400
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 16
49
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 18
2.1
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 3.6
1.5
Embodied Energy, MJ/kg 50
19
Embodied Water, L/kg 160
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
95
Resilience: Unit (Modulus of Resilience), kJ/m3 530
210
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 25
17
Strength to Weight: Bending, points 23
18
Thermal Diffusivity, mm2/s 4.3
13
Thermal Shock Resistance, points 20
15

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.2
Carbon (C), % 0 to 0.030
0 to 0.2
Chromium (Cr), % 21 to 23.5
0 to 0.3
Copper (Cu), % 0 to 1.0
0 to 0.3
Iron (Fe), % 62.6 to 71.9
96.7 to 99.98
Manganese (Mn), % 0 to 1.5
0 to 1.4
Molybdenum (Mo), % 2.5 to 3.5
0 to 0.080
Nickel (Ni), % 4.5 to 6.5
0 to 0.3
Niobium (Nb), % 0
0 to 0.010
Nitrogen (N), % 0.1 to 0.3
0
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0 to 1.0
0 to 0.4
Sulfur (S), % 0 to 0.020
0 to 0.015
Titanium (Ti), % 0
0 to 0.040
Vanadium (V), % 0
0 to 0.020