MakeItFrom.com
Menu (ESC)

ACI-ASTM CD3MN Steel vs. C61800 Bronze

ACI-ASTM CD3MN steel belongs to the iron alloys classification, while C61800 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CD3MN steel and the bottom bar is C61800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 29
26
Fatigue Strength, MPa 340
190
Poisson's Ratio 0.27
0.34
Shear Modulus, GPa 79
44
Tensile Strength: Ultimate (UTS), MPa 710
740
Tensile Strength: Yield (Proof), MPa 460
310

Thermal Properties

Latent Heat of Fusion, J/g 300
230
Maximum Temperature: Mechanical, °C 1060
220
Melting Completion (Liquidus), °C 1450
1050
Melting Onset (Solidus), °C 1400
1040
Specific Heat Capacity, J/kg-K 480
440
Thermal Conductivity, W/m-K 16
64
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
13
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
14

Otherwise Unclassified Properties

Base Metal Price, % relative 18
28
Density, g/cm3 7.8
8.3
Embodied Carbon, kg CO2/kg material 3.6
3.1
Embodied Energy, MJ/kg 50
52
Embodied Water, L/kg 160
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
150
Resilience: Unit (Modulus of Resilience), kJ/m3 530
420
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 25
25
Strength to Weight: Bending, points 23
22
Thermal Diffusivity, mm2/s 4.3
18
Thermal Shock Resistance, points 20
26

Alloy Composition

Aluminum (Al), % 0
8.5 to 11
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 21 to 23.5
0
Copper (Cu), % 0 to 1.0
86.9 to 91
Iron (Fe), % 62.6 to 71.9
0.5 to 1.5
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 2.5 to 3.5
0
Nickel (Ni), % 4.5 to 6.5
0
Nitrogen (N), % 0.1 to 0.3
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.1
Sulfur (S), % 0 to 0.020
0
Zinc (Zn), % 0
0 to 0.020
Residuals, % 0
0 to 0.5