MakeItFrom.com
Menu (ESC)

ACI-ASTM CD3MWCuN Steel vs. EN 1.4412 Stainless Steel

Both ACI-ASTM CD3MWCuN steel and EN 1.4412 stainless steel are iron alloys. They have a moderately high 92% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CD3MWCuN steel and the bottom bar is EN 1.4412 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 29
34
Fatigue Strength, MPa 370
190
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 80
79
Tensile Strength: Ultimate (UTS), MPa 790
490
Tensile Strength: Yield (Proof), MPa 500
230

Thermal Properties

Latent Heat of Fusion, J/g 300
300
Maximum Temperature: Corrosion, °C 450
420
Maximum Temperature: Mechanical, °C 1100
1000
Melting Completion (Liquidus), °C 1460
1450
Melting Onset (Solidus), °C 1410
1400
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 16
15
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 22
20
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 4.2
4.1
Embodied Energy, MJ/kg 58
56
Embodied Water, L/kg 180
160

Common Calculations

PREN (Pitting Resistance) 42
30
Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
140
Resilience: Unit (Modulus of Resilience), kJ/m3 620
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 28
17
Strength to Weight: Bending, points 24
18
Thermal Diffusivity, mm2/s 4.2
3.9
Thermal Shock Resistance, points 22
11

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.070
Chromium (Cr), % 24 to 26
18 to 20
Copper (Cu), % 0.5 to 1.0
0
Iron (Fe), % 56.6 to 65.3
60.4 to 69
Manganese (Mn), % 0 to 1.5
0 to 1.5
Molybdenum (Mo), % 3.0 to 4.0
3.0 to 3.5
Nickel (Ni), % 6.5 to 8.5
10 to 13
Nitrogen (N), % 0.2 to 0.3
0
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.5
Sulfur (S), % 0 to 0.025
0 to 0.030
Tungsten (W), % 0.5 to 1.0
0