MakeItFrom.com
Menu (ESC)

ACI-ASTM CD3MWCuN Steel vs. CC767S Brass

ACI-ASTM CD3MWCuN steel belongs to the iron alloys classification, while CC767S brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CD3MWCuN steel and the bottom bar is CC767S brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 29
34
Poisson's Ratio 0.27
0.31
Shear Modulus, GPa 80
40
Tensile Strength: Ultimate (UTS), MPa 790
430
Tensile Strength: Yield (Proof), MPa 500
150

Thermal Properties

Latent Heat of Fusion, J/g 300
180
Maximum Temperature: Mechanical, °C 1100
120
Melting Completion (Liquidus), °C 1460
840
Melting Onset (Solidus), °C 1410
790
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 16
110
Thermal Expansion, µm/m-K 13
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
32
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
36

Otherwise Unclassified Properties

Base Metal Price, % relative 22
23
Density, g/cm3 7.9
8.0
Embodied Carbon, kg CO2/kg material 4.2
2.7
Embodied Energy, MJ/kg 58
47
Embodied Water, L/kg 180
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
110
Resilience: Unit (Modulus of Resilience), kJ/m3 620
100
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 28
15
Strength to Weight: Bending, points 24
16
Thermal Diffusivity, mm2/s 4.2
34
Thermal Shock Resistance, points 22
14

Alloy Composition

Aluminum (Al), % 0
0.1 to 0.8
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 0.5 to 1.0
58 to 64
Iron (Fe), % 56.6 to 65.3
0 to 0.5
Lead (Pb), % 0
0 to 0.1
Manganese (Mn), % 0 to 1.5
0 to 0.5
Molybdenum (Mo), % 3.0 to 4.0
0
Nickel (Ni), % 6.5 to 8.5
0 to 1.0
Nitrogen (N), % 0.2 to 0.3
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.0
0 to 0.2
Sulfur (S), % 0 to 0.025
0
Tin (Sn), % 0
0 to 0.1
Tungsten (W), % 0.5 to 1.0
0
Zinc (Zn), % 0
32.8 to 41.9