MakeItFrom.com
Menu (ESC)

ACI-ASTM CD3MWCuN Steel vs. C86700 Bronze

ACI-ASTM CD3MWCuN steel belongs to the iron alloys classification, while C86700 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CD3MWCuN steel and the bottom bar is C86700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 29
17
Poisson's Ratio 0.27
0.31
Shear Modulus, GPa 80
41
Tensile Strength: Ultimate (UTS), MPa 790
630
Tensile Strength: Yield (Proof), MPa 500
250

Thermal Properties

Latent Heat of Fusion, J/g 300
180
Maximum Temperature: Mechanical, °C 1100
130
Melting Completion (Liquidus), °C 1460
880
Melting Onset (Solidus), °C 1410
860
Specific Heat Capacity, J/kg-K 470
400
Thermal Conductivity, W/m-K 16
89
Thermal Expansion, µm/m-K 13
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
17
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
19

Otherwise Unclassified Properties

Base Metal Price, % relative 22
23
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 4.2
2.9
Embodied Energy, MJ/kg 58
49
Embodied Water, L/kg 180
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
86
Resilience: Unit (Modulus of Resilience), kJ/m3 620
290
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 28
22
Strength to Weight: Bending, points 24
21
Thermal Diffusivity, mm2/s 4.2
28
Thermal Shock Resistance, points 22
21

Alloy Composition

Aluminum (Al), % 0
1.0 to 3.0
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 0.5 to 1.0
55 to 60
Iron (Fe), % 56.6 to 65.3
1.0 to 3.0
Lead (Pb), % 0
0.5 to 1.5
Manganese (Mn), % 0 to 1.5
1.0 to 3.5
Molybdenum (Mo), % 3.0 to 4.0
0
Nickel (Ni), % 6.5 to 8.5
0 to 1.0
Nitrogen (N), % 0.2 to 0.3
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.025
0
Tin (Sn), % 0
0 to 1.5
Tungsten (W), % 0.5 to 1.0
0
Zinc (Zn), % 0
30 to 38
Residuals, % 0
0 to 1.0