MakeItFrom.com
Menu (ESC)

ACI-ASTM CD3MWCuN Steel vs. S35125 Stainless Steel

Both ACI-ASTM CD3MWCuN steel and S35125 stainless steel are iron alloys. They have 74% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CD3MWCuN steel and the bottom bar is S35125 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 29
39
Fatigue Strength, MPa 370
200
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 80
78
Tensile Strength: Ultimate (UTS), MPa 790
540
Tensile Strength: Yield (Proof), MPa 500
230

Thermal Properties

Latent Heat of Fusion, J/g 300
300
Maximum Temperature: Corrosion, °C 450
490
Maximum Temperature: Mechanical, °C 1100
1100
Melting Completion (Liquidus), °C 1460
1430
Melting Onset (Solidus), °C 1410
1380
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 16
12
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 22
36
Density, g/cm3 7.9
8.1
Embodied Carbon, kg CO2/kg material 4.2
6.4
Embodied Energy, MJ/kg 58
89
Embodied Water, L/kg 180
210

Common Calculations

PREN (Pitting Resistance) 42
30
Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
170
Resilience: Unit (Modulus of Resilience), kJ/m3 620
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 28
19
Strength to Weight: Bending, points 24
18
Thermal Diffusivity, mm2/s 4.2
3.1
Thermal Shock Resistance, points 22
12

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.1
Chromium (Cr), % 24 to 26
20 to 23
Copper (Cu), % 0.5 to 1.0
0
Iron (Fe), % 56.6 to 65.3
36.2 to 45.8
Manganese (Mn), % 0 to 1.5
1.0 to 1.5
Molybdenum (Mo), % 3.0 to 4.0
2.0 to 3.0
Nickel (Ni), % 6.5 to 8.5
31 to 35
Niobium (Nb), % 0
0.25 to 0.6
Nitrogen (N), % 0.2 to 0.3
0
Phosphorus (P), % 0 to 0.030
0 to 0.045
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0 to 0.025
0 to 0.015
Tungsten (W), % 0.5 to 1.0
0